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Part Two: Sequential Monte Carlo Methods – the Framework

and Implementation

2.1 A Framework

2.1.1 (Optional) Intermediate Distributions

2.1.2 Propagation: Sampling Distribution

2.1.3 Resampling/Rejuvenation

2.1.4 Inference: Rao-Blackwellization

2.2 Some Theoretically Results

2.3 Some Applications (in detail)
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2.1.3 Resampling (rejuvenation)

Fact:

• Variance of wt increases (stochastically) as t increases

• SMC does not allow to go back to ’correct’ early samples

• Carrying samples with small weight forward wastes computa-

tional resources

Solution: duplicate the ’important’ samples and remove the

’unimportant’ samples.
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Simple resampling:

At time t, a set of samples St = {(x(j)
t , w

(j)
t )}m

j=1

Simple Resampling Step:

(A) Sample a new set of streams S
′
t from St according to w

(j)
t ,

with replacement.

(B) All sampled samples are assigned weight 1.

The resampled samples behaves as identical (but not indepen-

dent) samples from πt(xt).

Homework: Show the new sample is still properly weighted with

respect to πt(xt).
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Residual resampling:

At time t, a set of samples St = {(x(j)
t , w

(j)
t )}m

j=1.
∑m

j=1 w
(j)
t = 1.

• Make bmw
(j)
t c copies of x

(j)
t .

• Let m∗ = m−∑m
j=1bmw

(j)
t c and w

∗(j)
t = mw

(j)
t −bmw

(j)
t c, j = 1, ...m.

• Resample m∗ samples from St with probability proportional

to w
∗(j)
t with replacement.

Prune-and-Enriched Rosenbluth Method (Grassberger 1997):

• (Sequentially) Replacing each zero weight sample with the

sample of highest weight.

• The weight of both the original sample and the duplicated

sample are set to half of the original weight.

Homework: Show the new sample is still properly weighted with

respect to πt(xt).
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Remarks:

• Resampling provides more efficient samples of future states

• Resampling increases sampling variation in the past states

• Resampling reduces the number of distinctive samples in the

past states

• Frequent resampling can be shortsighted

• (online estimation) Resampling should be done after estima-

tion.

Resampling Schedule:

• deterministic: resampling at time t0, 2t0, 3t0, ...

• dynamic: monitoring the weight variance
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A simulated example:

yt = xt + 0.8xt−1 − 0.4xt−2 + εt

with xt i.i.d from {0, 1, 3} and SNR=15dB.

• The coefficients φ are integrated out with a normal prior.

• 200 simulated sequences. Sample size T = 200.

• Number of streams m = 1000.

• Delayed estimation: x̂t = MAP (πt+3(xt))

• simple random sampling (s) versus residual sampling (r)

• Deterministic schedule: t0, 2t0, 3t0, . . .

Dynamic schedule: when the effective sample size is less than

3.
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Deterministic Resampling Schedule t0 dynamic

1 5 20 50 100 200 schedule

error s r s r s r s r s r s r s r

0-2 11 5 7 13 13 13 7 10 1 0 0 0 11 12

3-5 49 49 46 53 61 65 53 49 28 28 7 7 69 58

6-8 41 43 50 52 72 70 57 58 59 58 12 12 66 67

9-11 23 20 27 30 38 38 52 48 43 44 47 47 29 41

12-15 10 9 13 7 8 6 17 20 33 32 44 44 16 8

16-25 11 10 14 11 8 8 14 15 35 35 84 84 6 11

16-50 4 10 8 9 0 0 0 0 1 3 6 6 1 1

>50 51 54 35 25 0 0 0 0 0 0 0 0 2 2
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Why resampling?

The asymptotic variance (×m) (estimating µ =
∫

h(xn)πn(xn)dxn)

• No resampling:

∫
π2

n(xn)(h(xn)− µ)2

g(xn)
dxn

• Resampling (Del Moral 2004, Chopin, 2004)

∫
π2

n(x1)(µ1(x1)− µ)2

g1(x1)
dx1 +

n∑
t=2

π2
n(xt)(µt(xt)− µ)2

πt−1(xt−1)gt(xt | xt−1)
dxt

where

µt(xt) =

∫
h(xt)πn(xt+1:n | xt)dxt+1:n

(a much smoother function and ’closer’ to µ)

– e.g. the first term: same as sample from g1(x1)πn(x2:n)
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Flexible Resampling Schemes

The resampling trick:

• Suppose x
(1)
t , . . . , x

(m)
t following g(xt)

• Sample m samples (with replacement) from the set {x(1)
t , . . . , x

(m)
t }

with probability proportional to αt(x
(j)
t ), j = 1, . . . , m.

• The resulting set asymptotically follow the distribution

g(xt)α(xt)

• e.g. α(xt) = πt(xt)/gt(xt)

One can choose different (and better) α(xt) to serve different

purposes.
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Flexible Resampling Schemes

• The square-root of weights (Liu, 2001)

αt−1(xt−1) =
√

wt−1(xt−1)

• Auxiliary particle filter (Pitt & Shephard, 1999)

αt−1(xt−1) = wt−1(xt−1)γt(x̂t | xt−1)

where x̂t is a (global) prediction of xt.

• Incremental-Weight Spreading. (Neil Shephard, private con-

versation)

αt−1(xt−1) = [

L∏

`=1

ut−`(xt−`)]
1/L =

L∏

`=1

[
πt−`(xt−`)

πt−`−1(xt−`−1)gt−`(xt−` | xt−`)

]1/L
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• Delayed resampling and block sampling (Wang et al, 2002,

Doucet et al 2006)

αt−1(xt−1) =
πt+δ(xt−1)

πt+δ−1(xt−2)gt(xt−1 | xt−1)

• Resampling with backward pilots, (Lin et al, 2009)

αt−1(xt−1) =
π̂n(xt−1)

π̂n(xt−2)gt−1(xt−1 | xt−2)

• Resampling with function consideration (Zhang et al, 2003)

αt−1(xt−1) = ‖µ̂t−1(xt−1)wt−1(xt−1)‖

where µ̂t−1(xt−1) is an estimate of
∫
|h(xn)πn(xn)|dxn
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At times t = 2, . . . , n,

(0) Construct αt−1 = {α(x
(1)
t−1), . . . , α(x

(m)
t−1)}

(A) Sample A
(j)
t−1 with prob {α(1)

t−1, . . . , α
(m)
t−1}

(B) sample x
(j)
t ∼ gt(· | xA

(j)
t−1

t−1 ) and set x
(j)
t := (x

A
(j)
t−1

t−1 , x
(j)
t ), and

(C) compute and normalize the weights

ut(x
(j)
1:t) =

πt(x
(j)
t )

πt−1(x
A

(j)
t−1

t−1 )gt(x
(j)
t | xA

(j)
t−1

n−1 )

wt(x
(j)
1:t) = ut(x

(j)
1:t)

Wt−1(x
A

(j)
n−1

n−1 )

αt−1(x
A

(j)
t−1

t−1 )

=
πt(x

(j)
t )

g1(x
A

(j)
1

1 )
∏t

i=1 gi(x
(j)
i | xA

(j)
i−1

i−1 )
∏t−1

i=1 αi(x
A

(j)
i−1

i−1 )

and

W
(j)
t =

wt(x
(j)
t )

∑m
j=1 wt(x

(j)
t )
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Why is it beneficial?

In fact, flexible resampling is nothing but changing the interme-

diate distribution.

Under flexible resampling scheme, the new intermediate distri-

bution is

π∗t (xt) ∝
t−1∏
i=1

[gi(xi | xi−1)αi(xi−1)]

When

αt(xt) = wt(xt) =
πt(xt)

πt(xt−1)gt(xt | xt−1)

we get back π∗t (xt) = πt(xt).
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• Often, there are natural intermediate distributions.

– In state space model, πt(xt) = p(xt | y1, . . . , yt).

• Often, the intermediate distributions guides the design of

gt(xt | xt−1)

– gt(xt | xt−1) close to πt(xt | xt−1)

• The design of αt(xt) can depend on the current samples of xt.

Adaptivity.

– αt(xt) = wβt
t (xt) where βt depends on the variance of the

current weight (for example).
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Optimal intermediate distribution: πt(xt) = πn(xt) (the true marginal)

The variance becomes

∫
π2

n(x1)(µ1(x1)− µ)2

g1(x1)
dx1 +

n∑
t=2

∫
πn(xt | xt−1)

gt(xt | xt−1)
πn(xt−1)(µt(xt)− µ)2dx1:t

Almost like each step is from the true distribution πn(xt).
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Delayed resampling:

π∗(xt) = πt+δ(xt)

with

αt(xt) =
πt+δ(xt)

gt(xt | xt−1)αt−1(xt−1)

Or an approximated delayed resampling

π∗(xt) = π̂t+δ(xt)
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If

αt(xt) =
π̂

(t)
n (xt)

gt(xt | xt−1)αt−1(xt−1)
, t = 1, . . . , n− 1

(achievable in certain cases, e.g. backward pilot) then

∫
π2

n(x1)(µ1 − µ)2

g1(x1)
dx1 +

n∑
t=2

∫
π2

n(xt)(µt − µ)2

π̂
(t)
n (xt−1)gt(xt | xt−1)

dx1:t

The difference is between πt−1(xt−1) and π̂
(t)
n (xt−1)
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Combined sampling and resampling scheme: (discrete state space)

• If xt takes values in {a1, . . . , ak}
• Evaluate αt(x

(j)
t−1, ai), i = 1, . . . , k, j = 1, . . . , m.

• Sample m distinct samples from {(x(j)
t−1, ai), i = 1, . . . , k, j = 1, . . . , m}

with probability proportional to αt(x
(j)
t−1, ai).

• Update weights
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Application: SALs

• Starting and Ending at (0, 0)

• Intermediate distributions

πt(xt): uniform of all SAW such that d(xt) < n − t (support)

where d(xt) = |xt,1| + |xt,2|
• Combined sampling and resampling

– Freedom: δ(xt) = n− t− d(xt)

– Flexibility:

β(xt) =
|xt,1|
d(xt)

|xt,2|
d(xt)

(δ(xt) + 1)

– Priority score

αt(xt) = wt−1exp

{
−

[
c1 +

δ(xt)
−c

T1t
+

β(xt)

T2t

]}
.

with temperature sequences T1t and T2t.
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SAL:

Log(total number) # of inside voids (mean)
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Example: SAW with shape-specific void

22



• Let Ω be the set of all length-n SAWs.

• Let Cν be the set of all length-n conformation with void ν

• Estimate:

P (xn ∈ Cν | xn ∈ Ω) =

∑
xn∈Cν

1∑
xn∈Ω 1

• Problem: Grow a SAW of length-n in Cν

• One possible solution: rejection method – too inefficient
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• Intermediate distributions: order of growth

– Select the monomers on the void wall first

– Then grow the segments between the monomers on the wall

• Sampling distribution:

– Self-avoiding

– Shrinking support – distance, connectivity

– Lookahead

• Resampling score: freedom and flexibility
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Fraction of conformations:
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Fraction of conformation

f̂ (ν, n) = c1r(ν)[(1− c2e(ν))c
−w(ν)+14
3 (n− w(ν) + 1)c4]

where

• w(ν): wall size

• e(ν): number of outer corners

• r(ν): number of different rotational transformations
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Out-sample prediction
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Example: Generating Samples of Diffusion Bridges

• Generate p(x1, . . . , xn−1 | x0 = a, xn = b)

• Sequential: p(xt | x0, xn, xt−1) ∝ p(xt | xt−1)p(xn | xt)

• Use backward pilots to estimate p(xn | xt).

• resampling according to α(xt) = wt(xt)π̂n(xt | xn)
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Example (Beskos et al. 2006)

dvt = sin(vt − θ)dt + dwt

• Comparison between ’exact sampling’ (Beskos et al. 2006),

SMC-0 and SMC-1.

• 100 realizations. Stepsize 0.001.

• Performance measure L̃(θ): exact sampling, 10M samples.

RMSE(θ) =

[
1

100

100∑
i=1

(L̂i(θ)− L̃(θ))2

]1/2

• Observation step size ∆ = 30

• Eular approximation

• Roughly same CPU time
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(Average) Likelihood function:
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Estimation of the likelihood function:

RMSE exact SMC-0 SMC-1

m 80,000 3,500 1,000

θ = 0.0π 1.719 0.519 0.325

θ = 0.2π 1.488 0.497 0.291

θ = 0.4π 1.211 0.433 0.214

θ = 0.6π 0.901 0.397 0.157

θ = 0.8π 0.648 0.347 0.136

θ = 1.0π 0.588 0.331 0.122

θ = 1.2π 0.671 0.356 0.135

θ = 1.4π 0.870 0.399 0.165

θ = 1.6π 1.217 0.452 0.227

θ = 1.8π 1.573 0.507 0.299

time(sec.) 0.490 0.478 0.470
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Estimation of the log-transition density
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y0 = 0, yn = π
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y0 = 0, yn = 2π
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y0 = 0, yn = 4π
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y0 = 0, yn = 5π
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Questions

• What are the principles of designing the intermediate distri-

butions or the equivalent resampling scheme?

• How do we know one is better than another?

• Trade-off between better intermediate distributions and com-

plexity

• Rationalize some of the existing resampling schemes
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2.1.4 Inference

Inference:

Êπth(xt) =

∑m
j=1 w

(j)
t h(x

(j)
t )

∑m
j=1 w

(j)
t

• Estimation should be done before a resampling step

• Rao-Blackwellization: For example, if wt+1 does not depend

on xt+1, then

Êπt+1h(xt+1) =

∑m
j=1 w

(j)
t+1Eπt+1(h(xt+1) | x(j)

t )
∑m

j=1 w
(j)
t+1

• Delayed estimation (i.e. Eπth(xt−k) at time t) is usually more

accurate since the estimation is based on more information.

• Frequent resampling may have adverse effect.
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