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Part Two: Sequential Monte Carlo Methods — the Framework

and Implementation

2.1 A Framework

2.1.1 (Optional) Intermediate Distributions
2.1.2 Propagation: Sampling Distribution
2.1.3 Resampling/Rejuvenation

2.1.4 Inference: Rao-Blackwellization
2.2 Some Theoretically Results

2.3 Some Applications (in detail)



2.1.3 Resampling (rejuvenation)

Fact:

e Variance of w; increases (stochastically) as t increases
e SMC does not allow to go back to ’correct’ early samples

e Carrying samples with small weight forward wastes computa-

tional resources

Solution: duplicate the ’important’ samples and remove the

‘'unimportant’ samples.



Simple resampling:

At time t, a set of samples S; = {(a:f:j), w(j)) Ly

Simple Resampling Step:

A) Sample a new set of streams S from S, according to w'
t t

with replacement.

(B) All sampled samples are assigned weight 1.

The resampled samples behaves as identical (but not indepen-

dent) samples from 7 (x;).

Homework: Show the new sample is still properly weighted with

respect to m(x;).



Residual resampling:

At time ¢, a set of samples S; = {(z, w1 D i1 wi = 1.

=1
e Make mef )J copies of :Ugj ),

o Lot m* — 1y — Z;n:l megj)J and w:(j) — mwV) — me(j)J

, ] =1,...m.

e Resample m* samples from S; with probability proportional

to w, ¥ with replacement.

Prune-and-Enriched Rosenbluth Method (Grassberger 1997):

e (Sequentially) Replacing each zero weight sample with the
sample of highest weight.

e The weight of both the original sample and the duplicated

sample are set to half of the original weight.

Homework: Show the new sample is still properly weighted with

respect to m(x;).



Remarks:
e Resampling provides more efficient samples of future states
e Resampling increases sampling variation in the past states

e Resampling reduces the number of distinctive samples in the

past states
e Frequent resampling can be shortsighted

e (online estimation) Resampling should be done after estima-

tion.

Resampling Schedule:

e deterministic: resampling at time %, 2¢,, 3to, ...

e dynamic: monitoring the weight variance



A simulated example:
yr = x¢ +0.8x;1 — 0.4z 9+ &4
with z; i.i.d from {0,1,3} and SNR=15dB.
e The coefficients ¢ are integrated out with a normal prior.
e 200 simulated sequences. Sample size T = 200.
e Number of streams m = 1000.
e Delayed estimation: z; = MAP(7;3(x))
e simple random sampling (s) versus residual sampling (r)

e Deterministic schedule: ¢y, 2¢, 3¢, . ..

Dynamic schedule: when the effective sample size is less than
3.



Deterministic Resampling Schedule t

dynamic

1 20 50 100 200 | schedule
error| s s rl s rl s rl s r s r| s r
0-2/11 5| 7 13|13 13 710 1 O O 0|11 12
3-5|49 49 46 53 61 65|53 49|28 28| 7 769 58
6-8 |41 43 50 52|72 70|57 58|59 58 |12 12 66 67
9-11 23 20|27 30|38 38 52 48 43 44 47 47|29 41
12-15/10 913 7| 8 6|17 20|33 32 /44 44 16 8
16-2511 10|14 11| 8 8|14 15|35 35/ 84 84| 6 11
16-50 4 10 8 9 0 0, 0 0/ 1 3 6 6
>50(51 54|35 25| 0 O] O O] O O 0O O] 2 2




Why resampling?
The asymptotic variance (xm) (estimating u = [ h(x,)m,(x,)dx,)

e No resampling:

dx,,

/ﬂ-?%(wn)(h(wn) — p)’°
g(x,)
e Resampling (Del Moral 2004, Chopin, 2004)

/ ma(21) (p (1) — dx +Z ut wt) 1t)> iz,

91($1) T —1 CEt 1 gt Lt \ Lt 1)

where
Nt(wt> — /h<mt>ﬂ-n(mt+1:n | m15>dwier1:n

(a much smoother function and ’closer’ to )

—e.g. the first term: same as sample from ¢;(x1)m,(x2.,)



Flexible Resampling Schemes

The resampling trick:

e Suppose z'”, ..., z\" following g(z;)

e Sample m samples (with replacement) from the set {azgl), e w§m>

with probability proportional to ozt(w(j)), j=1,...,m.

® The resulting set asymptotically follow the distribution
g(@e)o(y)

¢ e.g. afxy) = m(x)/gi(1)

One can choose different (and better) a(x;) to serve different

purposes.
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Flexible Resampling Schemes

e The square-root of weights (Liu, 2001)

ozt1513t1 \/’LUtliUtl
e Auxiliary particle filter (Pitt & Shephard, 1999)
ar1(xi—1) = wi—1(xs— 1) (Tt | Tr-1)
where 7; is a (global) prediction of z;.

e Incremental-Weight Spreading. (Neil Shephard, private con-

versation)

1/L
1/L Ty — 6(3315 5)
atlwtl Hutéiﬂte ZH

yoq LTt~ H(@t—0-1)Gt—o(Tt—r | Tr—r)

~




e Delayed resampling and block sampling (Wang et al, 2002,
Doucet et al 2006)

7Tt+5(513t—1)
7Tt+5—1(33t—2)gt<33t—1 ! iBt—1)

a—1(xi—1) =

e Resampling with backward pilots, (Lin et al, 2009)

a1 (xp_) = T(®e-1)
7Arn<wt—2>gt—1 (fl?‘t—1 \ wt—2)

e Resampling with function consideration (Zhang et al, 2003)

Oét_1<$t_1) — ﬂt—l(wt—1>wt—1<wt—1) H

where [i;_1(x; 1) is an estimate of

/ \h(x,) T, (2,)|da,
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At times t =2,...,n,

(0) Construct a; 1 = {oz(ar;gl_)l) oz(azgm

(A) Sample Ag ')1 with prob {ozt e T%}

G) 4y G) .

(B) sample z;” ~ ¢,(- | z,'{') and set x,

(C) compute and normalize the weights

=

(4)
A
Li_q

(4)

Yy, and

w(xy)) = @)
N Agj)l (4) Aij)l
mia (@ (el | 2
A(])1 (4)
o@D = (¥ )>Wt 1(z,") mi(x;)
AN AN B 40) Agjy ) A@1 1 A(j)l
ar1(x ) gi(zy' ) 1Lzt gi |2, ) T iyl )
and 9
wt<wtj )
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Why is it beneficial?

In fact, flexible resampling is nothing but changing the interme-

diate distribution.

Under flexible resampling scheme, the new intermediate distri-

bution is o

mi (@) oc | [lgilwi | @imn)ei(@io)

i=1
When
7Tt<33t>
7Tt<33t—1)9t<33t ’ CBt—l)

Oét(th) = wt(wt) =

we get back 7/ (x;) = m(xy).
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e Often, there are natural intermediate distributions.
— In state space model, 7m(x;) = p(x: | y1,. .., ye).

e Often, the intermediate distributions guides the design of
ge(@e | 2e-1)

— gt(ft ’ QL't_l) close to 7Tt<£Ct ‘ .’L’t_l)

e The design of o;(x;) can depend on the current samples of x;.
Adaptivity.

— ay(x;) = w)'(x;) where 5, depends on the variance of the

current weight (for example).
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Optimal intermediate distribution: m;(x;) = 7,(x;) (the true marginal)

The variance becomes

[ et - d1+z & ””t"”“'“ oo 1) (1) — )

g1(1)

Almost like each step is from the true distribution m,(x;).
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Delayed resampling:

T (xs) = Tip5(T4)

with
Tt4§ (wt)

(%) = gi(@e | 1)y (@-1)

Or an approximated delayed resampling

T (xs) = Tep5(T4)
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If t
o ()

gt(flft | wt—1>at—1(wt—1)

Oét<$t>: ,tzl,...,n—l

(achievable in certain cases, e.g. backward pilot) then

/W?L(ﬂ?l)(m - M)del +§n:/ T (20)(t = 1)° d

g1(x1) — 7 T (1) g | 1)

The difference is between m;_{(x; ;) and ﬁét)(wt_l)
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Combined sampling and resampling scheme: (discrete state space)

o If x; takes values in {ay,...,a;}

e Evaluate ozt(azﬁl,ai), i=1,....k,7=1,....,m.
7)

La)i=1,...  kj=1..,m}

with probability proportional to ozt(a;@l, a;).

e Sample m distinct samples from {(:1:7(f

e Update weights
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Application: SALs
e Starting and Ending at (0,0)

e Intermediate distributions
m(x): uniform of all SAW such that d(x;) < n —t (support)

where d(x;) = |x41| + |7:2]
e Combined sampling and resampling

— Freedom: J(x;) =n —t — d(axy)

— Flexibility:
\fﬂt1| |$t2\
= ’ ity ) 1
6(3375) d(ﬂ?t) d(iBt)( (mt) + )
— Priority score
o(xy) ¢ 5(51316)] }
Qi r) = Wr_16x — |c1 + -+ i
t( t) t—1 p{ [1 T, Ty,

with temperature sequences 77; and T5,.
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SAL:

Log(total number) # of inside voids (mean)

55 T T 40 I T
* Enumerate * Enumerate
- SMC - SMC

45+

40F

30F

251

151

101
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Example: SAW with shape-specific void
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e Let () be the set of all length-n SAWs.
e Let (', be the set of all length-n conformation with void v

e Estimate:
Z:UHEC,, 1

2 x,enl
e Problem: Grow a SAW of length-n in C,

Plx, € C, |z, € Q2) =

e One possible solution: rejection method — too inefficient

23



e Intermediate distributions: order of growth

— Select the monomers on the void wall first

— Then grow the segments between the monomers on the wall
e Sampling distribution:

— Self-avoiding

— Shrinking support — distance, connectivity

— Lookahead

e Resampling score: freedom and flexibility

24



void 2.1 void 3.1 void 3.2 void 4.1

void 4.2 void 4.3 void 4.4 void 4.5

void 3.1 void 6.1 void 6.2 void 6.3
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Fraction of conformations:

00161 x10°
-6 void 3.1 5
—- v0id 3.2 -6~ void 4.1
%= void 4.2
45H —+ void 4.3
=% void 4.4

0.014

-B- void 4.5

0.012

0.01

0.008

0.006

0.004 | | | | J 0 | | | | J
25 30 35 40 45 50 25 30 35 40 45 50

length (void size=3) length (void size=4)
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Fraction of conformation

flv,n) = cr@)(1 = cae())eg ™ — wlv) + 1)1
where
o w(v): wall size
e ¢(v): number of outer corners

e (v): number of different rotational transformations
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Out-sample prediction

x10°
1

-©- void 6.1
—— void 6.2 X
10H —+ void 6.3 -

25 30 35 40 45 50
length (void size=6)
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Example: Generating Samples of Diffusion Bridges

e Generate p(zy,..., 2, 1 | xo=a,x, = b)

e Sequential: p(z; | xo, Ty, 21 1) X p(xr | Tro1)p(T) | T4)

e Use backward pilots to estimate p(z, | z;).

resampling according to a(x;) = w(xy) (2 | 2p)

35

30¢

25¢

20¢

— "Pefect" sampling distribution

20

29

14

12}

107

—— Backward Pilot
— Forward Sample




Example (Beskos et al. 2006)

dv; = sin(vy — 0)dt + dw;

e Comparison between ’exact sampling’ (Beskos et al. 2006),
SMC-0 and SMC-1.

e 100 realizations. Stepsize 0.001.
e Performance measure E(@): exact sampling, 10M samples.

1/2
100
1 5

RMSE(0) = |15 (Li(#) = L(9))°

1=1

e Observation step size A = 30
e Eular approximation

e Roughly same CPU time
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(@) 500 1000

1500

_6 1 s
1500 2000 2500
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(Average)

Likelihood function:

x 10
-1.5

—25+

—3.5+
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T T

— "Perfect" sampling distribution

0 30 60 90 0 30 60 90
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Estimation of the likelihood function:

RMSE exact | SMC-0 | SMC-1

m 80,000 | 3,500 1,000

0 =0.0m 1.719 0.519 0.325

0 =0.2r 1.488 0.497 0.291

0=04r 1.211 0.433 0.214

0 =0.6m 0.901 0.397 0.157

6 =0.8m 0.648 0.347 0.136

0=10m 0.588 0.331 0.122

0=12m 0.671 0.356 0.135

0=14r 0.870 0.399 0.165

0 =106m 1.217 0.452 0.227

6 =1.8m 1.573 0.507 0.299

time(sec.) | 0.490 | 0.478 0.470

34



Estimation of the log-transition density

(1=g) Ajiqeqoid uonisuel] 6o

XO/T[
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T T
"Perfect" sampling distribution

25 30
t

T T
"Perfect" sampling distribution

25 30
t
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T T
—— Sampling distribution of SMC-2

viTt

20 25 30

T T
—— Sampling distribution of SMC-2

viT
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T T
—— "Perfect" sampling distribution

10 15 20 25 30

T T T T
— "Perfect” sampling distribution

10 15 20 25 30
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viTt

viT

— Samplins

T T
g distribution of SMC-2 ‘

0 25 30

—— Samplini

T T
g distribution of SMC-2

15 2

0 25 30



Questions

e What are the principles of designing the intermediate distri-

butions or the equivalent resampling scheme?
e How do we know one is better than another?

e Trade-off between better intermediate distributions and com-

plexity

e Rationalize some of the existing resampling schemes
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2.1.4 Inference

Inference: , .
o S e hia)

Z?:l ng)

e Estimation should be done before a resampling step

e Rao-Blackwellization: For example, if w;,; does not depend

on z;,1, then

: S wil By (Be) | @)
E7Tt+1h($t+1> — m ;)
ijl Wy

e Delayed estimation (i.e. E,h(x;_) at time t) is usually more

accurate since the estimation is based on more information.

e Frequent resampling may have adverse effect.
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Resampling
Schedule

|

Resampling
t= R0

A discrete approx.of
prob. dist. at timet.

4/9/03

\M+1

~ T t+1(Xt+1 |Xt)

gt+1(xt+1 Ixt)

S+1

T

—

O 1 (% 11%0)

W&, g

1 Tct+1(xt)

a[+1 Tct (Xt)

Particle Filter and SMC

Est.

/Y t+2

A discrete approx.of
prob. dist. at time t+1.
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