Short Course

State Space Models, Generalized Dynamic Systems and Sequential Monte Carlo Methods, and

their applications

in Engineering, Bioinformatics and Finance

Rong Chen Rutgers University Peking University

Part Two: Sequential Monte Carlo Methods – the Framework and Implementation

- 2.1 A Framework
- 2.1.1 (Optional) Intermediate Distributions
- 2.1.2 Propagation: Sampling Distribution
- 2.1.3 Resampling/Rejuvenation
- 2.1.4 Inference: Rao-Blackwellization
- 2.2 Some Theoretically Results
- 2.3 Some Applications (in detail)

2.1.3 Resampling (rejuvenation)

Fact:

- Variance of w_t increases (stochastically) as t increases
- SMC does not allow to go back to 'correct' early samples
- Carrying samples with small weight forward wastes computational resources

Solution: duplicate the 'important' samples and remove the 'unimportant' samples.

Simple resampling:

At time t, a set of samples $S_t = \{(\boldsymbol{x}_t^{(j)}, w_t^{(j)})\}_{j=1}^m$

Simple Resampling Step:

(A) Sample a new set of streams S'_t from S_t according to $w_t^{(j)}$, with replacement.

(B) All sampled samples are assigned weight 1.

The resampled samples behaves as identical (but not independent) samples from $\pi_t(\boldsymbol{x}_t)$.

Homework: Show the new sample is still properly weighted with respect to $\pi_t(\boldsymbol{x}_t)$.

Residual resampling:

At time t, a set of samples $S_t = \{(\boldsymbol{x}_t^{(j)}, w_t^{(j)})\}_{j=1}^m$. $\sum_{j=1}^m w_t^{(j)} = 1$.

- Make $\lfloor m w_t^{(j)} \rfloor$ copies of $x_t^{(j)}$.
- Let $m^* = m \sum_{j=1}^m \lfloor mw_t^{(j)} \rfloor$ and $w_t^{*(j)} = mw_t^{(j)} \lfloor mw_t^{(j)} \rfloor$, j = 1, ...m.
- Resample m^* samples from S_t with probability proportional to $w_t^{*(j)}$ with replacement.

Prune-and-Enriched Rosenbluth Method (Grassberger 1997):

- (Sequentially) Replacing each zero weight sample with the sample of highest weight.
- The weight of both the original sample and the duplicated sample are set to half of the original weight.

Homework: Show the new sample is still properly weighted with respect to $\pi_t(\boldsymbol{x}_t)$.

Remarks:

- Resampling provides more efficient samples of future states
- Resampling increases sampling variation in the past states
- Resampling reduces the number of distinctive samples in the past states
- Frequent resampling can be *shortsighted*
- (online estimation) Resampling should be done after estimation.

Resampling Schedule:

- deterministic: resampling at time $t_0, 2t_0, 3t_0, ...$
- dynamic: monitoring the weight variance

A simulated example:

$$y_t = x_t + 0.8x_{t-1} - 0.4x_{t-2} + \varepsilon_t$$

with x_t i.i.d from $\{0, 1, 3\}$ and SNR=15dB.

- The coefficients ϕ are integrated out with a normal prior.
- 200 simulated sequences. Sample size T = 200.
- Number of streams m = 1000.
- Delayed estimation: $\hat{x}_t = MAP(\pi_{t+3}(x_t))$
- simple random sampling (s) versus residual sampling (r)
- Deterministic schedule: t₀, 2t₀, 3t₀, ...
 Dynamic schedule: when the effective sample size is less than 3.

	Deterministic Resampling Schedule t_0								t_0	dynamic				
	-	1	Į	5	2	0	50		100		200		schedule	
error	s	r	S	r	s	r	S	r	S	r	S	r	S	\mathbf{r}
0-2	11	5	7	13	13	13	7	10	1	0	0	0	11	12
3-5	49	49	46	53	61	65	53	49	28	28	7	7	69	58
6-8	41	43	50	52	72	70	57	58	59	58	12	12	66	67
9-11	23	20	27	30	38	38	52	48	43	44	47	47	29	41
12-15	10	9	13	7	8	6	17	20	33	32	44	44	16	8
16-25	11	10	14	11	8	8	14	15	35	35	84	84	6	11
16-50	4	10	8	9	0	0	0	0	1	3	6	6	1	1
>50	51	54	35	25	0	0	0	0	0	0	0	0	2	2

Why resampling?

The asymptotic variance (×m) (estimating $\mu = \int h(\boldsymbol{x}_n) \pi_n(\boldsymbol{x}_n) d\boldsymbol{x}_n$)

• No resampling:

$$\int rac{\pi_n^2(oldsymbol{x}_n)(h(oldsymbol{x}_n)-\mu)^2}{g(oldsymbol{x}_n)}doldsymbol{x}_n$$

• Resampling (Del Moral 2004, Chopin, 2004)

$$\int \frac{\pi_n^2(x_1)(\mu_1(x_1)-\mu)^2}{g_1(x_1)} dx_1 + \sum_{t=2}^n \frac{\pi_n^2(\boldsymbol{x}_t)(\mu_t(\boldsymbol{x}_t)-\mu)^2}{\pi_{t-1}(\boldsymbol{x}_{t-1})g_t(x_t \mid \boldsymbol{x}_{t-1})} d\boldsymbol{x}_t$$

where

$$\mu_t(oldsymbol{x}_t) = \int h(oldsymbol{x}_t) \pi_n(oldsymbol{x}_{t+1:n} \mid oldsymbol{x}_t) doldsymbol{x}_{t+1:n}$$

(a much smoother function and 'closer' to μ)

-e.g. the first term: same as sample from $g_1(x_1)\pi_n(\boldsymbol{x}_{2:n})$

Flexible Resampling Schemes

The resampling trick:

- Suppose $\boldsymbol{x}_t^{(1)}, \ldots, \boldsymbol{x}_t^{(m)}$ following $g(\boldsymbol{x}_t)$
- Sample *m* samples (with replacement) from the set $\{x_t^{(1)}, \ldots, x_t^{(m)}\}$ with probability proportional to $\alpha_t(x_t^{(j)}), j = 1, \ldots, m$.
- The resulting set asymptotically follow the distribution

 $g(\boldsymbol{x}_t) \alpha(\boldsymbol{x}_t)$

• e.g. $\alpha(x_t) = \pi_t(x_t)/g_t(x_t)$

One can choose different (and better) $\alpha(\boldsymbol{x}_t)$ to serve different purposes.

Flexible Resampling Schemes

• The square-root of weights (Liu, 2001)

$$\alpha_{t-1}(\boldsymbol{x}_{t-1}) = \sqrt{w_{t-1}(\boldsymbol{x}_{t-1})}$$

• Auxiliary particle filter (Pitt & Shephard, 1999)

$$\alpha_{t-1}(\boldsymbol{x}_{t-1}) = w_{t-1}(\boldsymbol{x}_{t-1})\gamma_t(\hat{x}_t \mid \boldsymbol{x}_{t-1})$$

where \hat{x}_t is a (global) prediction of x_t .

• Incremental-Weight Spreading. (Neil Shephard, private conversation)

$$\alpha_{t-1}(\boldsymbol{x}_{t-1}) = \left[\prod_{\ell=1}^{L} u_{t-\ell}(\boldsymbol{x}_{t-\ell})\right]^{1/L} = \prod_{\ell=1}^{L} \left[\frac{\pi_{t-\ell}(\boldsymbol{x}_{t-\ell})}{\pi_{t-\ell-1}(\boldsymbol{x}_{t-\ell-1})g_{t-\ell}(x_{t-\ell} \mid \boldsymbol{x}_{t-\ell})}\right]^{1/L}$$

• Delayed resampling and block sampling (Wang et al, 2002, Doucet et al 2006)

$$\alpha_{t-1}(\boldsymbol{x}_{t-1}) = \frac{\pi_{t+\delta}(\boldsymbol{x}_{t-1})}{\pi_{t+\delta-1}(\boldsymbol{x}_{t-2})g_t(x_{t-1} \mid \boldsymbol{x}_{t-1})}$$

• Resampling with backward pilots, (Lin et al, 2009)

$$\alpha_{t-1}(\boldsymbol{x}_{t-1}) = \frac{\hat{\pi}_n(\boldsymbol{x}_{t-1})}{\hat{\pi}_n(\boldsymbol{x}_{t-2})g_{t-1}(x_{t-1} \mid \boldsymbol{x}_{t-2})}$$

• Resampling with function consideration (Zhang et al, 2003)

$$\alpha_{t-1}(\boldsymbol{x}_{t-1}) = \|\hat{\mu}_{t-1}(\boldsymbol{x}_{t-1})w_{t-1}(\boldsymbol{x}_{t-1})\|$$

where $\hat{\mu}_{t-1}(\boldsymbol{x}_{t-1})$ is an estimate of

$$\int |h(oldsymbol{x}_n)\pi_n(oldsymbol{x}_n)|doldsymbol{x}_n|$$

At times $t = 2, \ldots, n$,

(0) Construct $\alpha_{t-1} = \{ \alpha(\boldsymbol{x}_{t-1}^{(1)}), \dots, \alpha(\boldsymbol{x}_{t-1}^{(m)}) \}$ (A) Sample $A_{t-1}^{(j)}$ with prob $\{ \alpha_{t-1}^{(1)}, \dots, \alpha_{t-1}^{(m)} \}$ (B) sample $x_t^{(j)} \sim g_t(\cdot \mid \boldsymbol{x}_{t-1}^{A_{t-1}^{(j)}})$ and set $\boldsymbol{x}_t^{(j)} := (\boldsymbol{x}_{t-1}^{A_{t-1}^{(j)}}, x_t^{(j)})$, and

(C) compute and normalize the weights

$$u_{t}(\boldsymbol{x}_{1:t}^{(j)}) = \frac{\pi_{t}(\boldsymbol{x}_{t}^{(j)})}{\pi_{t-1}(\boldsymbol{x}_{t-1}^{A_{t-1}^{(j)}})g_{t}(x_{t}^{(j)} \mid \boldsymbol{x}_{n-1}^{A_{t-1}^{(j)}})}$$
$$w_{t}(\boldsymbol{x}_{1:t}^{(j)}) = u_{t}(\boldsymbol{x}_{1:t}^{(j)})\frac{W_{t-1}(\boldsymbol{x}_{n-1}^{A_{n-1}^{(j)}})}{\alpha_{t-1}(\boldsymbol{x}_{t-1}^{A_{t-1}^{(j)}})} = \frac{\pi_{t}(\boldsymbol{x}_{t}^{(j)})}{g_{1}(x_{1}^{A_{1}^{(j)}})\prod_{i=1}^{t}g_{i}(x_{i}^{(j)} \mid \boldsymbol{x}_{i-1}^{A_{i-1}^{(j)}})\prod_{i=1}^{t-1}\alpha_{i}(\boldsymbol{x}_{i-1}^{A_{i-1}^{(j)}})}$$

and

$$W_t^{(j)} = \frac{w_t(\boldsymbol{x}_t^{(j)})}{\sum_{j=1}^m w_t(\boldsymbol{x}_t^{(j)})}$$

Why is it beneficial?

In fact, flexible resampling is nothing but changing the intermediate distribution.

Under flexible resampling scheme, the new intermediate distribution is

$$\pi_t^*(\boldsymbol{x}_t) \propto \prod_{i=1}^{t-1} [g_i(x_i \mid \boldsymbol{x}_{i-1})\alpha_i(\boldsymbol{x}_{i-1})]$$

When

$$\alpha_t(\boldsymbol{x}_t) = w_t(\boldsymbol{x}_t) = \frac{\pi_t(\boldsymbol{x}_t)}{\pi_t(\boldsymbol{x}_{t-1})g_t(x_t \mid \boldsymbol{x}_{t-1})}$$
we get back $\pi_t^*(\boldsymbol{x}_t) = \pi_t(\boldsymbol{x}_t)$.

• Often, there are natural intermediate distributions.

- In state space model, $\pi_t(\boldsymbol{x}_t) = p(\boldsymbol{x}_t \mid y_1, \dots, y_t)$.

• Often, the intermediate distributions guides the design of $g_t(x_t \mid \boldsymbol{x}_{t-1})$

$$-g_t(x_t \mid \boldsymbol{x}_{t-1})$$
 close to $\pi_t(x_t \mid \boldsymbol{x}_{t-1})$

• The design of $\alpha_t(\boldsymbol{x}_t)$ can depend on the current samples of \boldsymbol{x}_t . Adaptivity.

 $-\alpha_t(\boldsymbol{x}_t) = w_t^{\beta_t}(\boldsymbol{x}_t)$ where β_t depends on the variance of the current weight (for example).

Optimal intermediate distribution: $\pi_t(\boldsymbol{x}_t) = \pi_n(\boldsymbol{x}_t)$ (the true marginal)

The variance becomes

$$\int \frac{\pi_n^2(x_1)(\mu_1(x_1) - \mu)^2}{g_1(x_1)} dx_1 + \sum_{t=2}^n \int \frac{\pi_n(x_t \mid \boldsymbol{x}_{t-1})}{g_t(x_t \mid \boldsymbol{x}_{t-1})} \pi_n(\boldsymbol{x}_{t-1})(\mu_t(\boldsymbol{x}_t) - \mu)^2 dx_{1:t}$$

Almost like each step is from the true distribution $\pi_n(\boldsymbol{x}_t)$.

Delayed resampling:

$$\pi^*(\boldsymbol{x}_t) = \pi_{t+\delta}(\boldsymbol{x}_t)$$

with

$$\alpha_t(\boldsymbol{x}_t) = \frac{\pi_{t+\delta}(\boldsymbol{x}_t)}{g_t(x_t \mid \boldsymbol{x}_{t-1})\alpha_{t-1}(\boldsymbol{x}_{t-1})}$$

Or an approximated delayed resampling

$$\pi^*(\boldsymbol{x}_t) = \hat{\pi}_{t+\delta}(\boldsymbol{x}_t)$$

If

$$\alpha_t(\boldsymbol{x}_t) = \frac{\hat{\pi}_n^{(t)}(\boldsymbol{x}_t)}{g_t(x_t \mid \boldsymbol{x}_{t-1})\alpha_{t-1}(\boldsymbol{x}_{t-1})}, t = 1, \dots, n-1$$

(achievable in certain cases, e.g. backward pilot) then

$$\int \frac{\pi_n^2(x_1)(\mu_1 - \mu)^2}{g_1(x_1)} dx_1 + \sum_{t=2}^n \int \frac{\pi_n^2(\boldsymbol{x}_t)(\mu_t - \mu)^2}{\hat{\pi}_n^{(t)}(\boldsymbol{x}_{t-1})g_t(x_t \mid \boldsymbol{x}_{t-1})} dx_{1:t}$$

The difference is between $\pi_{t-1}(\boldsymbol{x}_{t-1})$ and $\hat{\pi}_n^{(t)}(\boldsymbol{x}_{t-1})$

Combined sampling and resampling scheme: (discrete state space)

- If x_t takes values in $\{a_1, \ldots, a_k\}$
- Evaluate $\alpha_t(\boldsymbol{x}_{t-1}^{(j)}, a_i), i = 1, ..., k, j = 1, ..., m$.
- Sample m distinct samples from $\{(\boldsymbol{x}_{t-1}^{(j)}, a_i), i = 1, \dots, k, j = 1, \dots, m\}$ with probability proportional to $\alpha_t(\boldsymbol{x}_{t-1}^{(j)}, a_i)$.
- Update weights

Application: SALs

- \bullet Starting and Ending at (0,0)
- Intermediate distributions

 $\pi_t(\boldsymbol{x}_t)$: uniform of all SAW such that $d(\boldsymbol{x}_t) < n - t$ (support) where $d(\boldsymbol{x}_t) = |x_{t,1}| + |x_{t,2}|$

- Combined sampling and resampling
 - -Freedom: $\delta(\boldsymbol{x}_t) = n t d(\boldsymbol{x}_t)$
 - Flexibility:

$$\beta(\boldsymbol{x}_t) = \frac{|\boldsymbol{x}_{t,1}|}{d(\boldsymbol{x}_t)} \frac{|\boldsymbol{x}_{t,2}|}{d(\boldsymbol{x}_t)} (\delta(\boldsymbol{x}_t) + 1)$$

– Priority score

$$\alpha_t(\boldsymbol{x}_t) = w_{t-1}exp\left\{-\left[c_1 + \frac{\delta(\boldsymbol{x}_t)^{-c}}{T_{1t}} + \frac{\beta(\boldsymbol{x}_t)}{T_{2t}}\right]\right\}$$

with temperature sequences T_{1t} and T_{2t} .

SAL:

Example: SAW with shape-specific void

- Let Ω be the set of all length-*n* SAWs.
- Let C_{ν} be the set of all length-*n* conformation with void ν
- Estimate:

$$P(\boldsymbol{x}_n \in C_{\nu} \mid \boldsymbol{x}_n \in \Omega) = \frac{\sum \boldsymbol{x}_n \in C_{\nu} 1}{\sum \boldsymbol{x}_n \in \Omega 1}$$

- Problem: Grow a SAW of length-n in C_{ν}
- One possible solution: rejection method too inefficient

• Intermediate distributions: order of growth

– Select the monomers on the void wall first

– Then grow the segments between the monomers on the wall

- Sampling distribution:
 - Self-avoiding
 - Shrinking support distance, connectivity

– Lookahead

• Resampling score: freedom and flexibility

Fraction of conformations:

Fraction of conformation

$$\hat{f}(\nu, n) = c_1 r(\nu) [(1 - c_2 e(\nu)) c_3^{-w(\nu) + 14} (n - w(\nu) + 1)^{c_4}]$$

where

- $w(\nu)$: wall size
- $e(\nu)$: number of outer corners
- $\bullet\ r(\nu)$: number of different rotational transformations

Out-sample prediction

Example: Generating Samples of Diffusion Bridges

- Generate $p(x_1, ..., x_{n-1} | x_0 = a, x_n = b)$
- Sequential: $p(x_t \mid x_0, x_n, \boldsymbol{x}_{t-1}) \propto p(x_t \mid x_{t-1})p(x_n \mid x_t)$
- Use backward pilots to estimate $p(x_n \mid x_t)$.
- resampling according to $\alpha(x_t) = w_t(x_t)\hat{\pi}_n(x_t \mid x_n)$

Example (Beskos et al. 2006)

$$dv_t = \sin(v_t - \theta)dt + dw_t$$

- Comparison between 'exact sampling' (Beskos et al. 2006), SMC-0 and SMC-1.
- 100 realizations. Stepsize 0.001.
- Performance measure $\tilde{L}(\theta)$: exact sampling, 10M samples.

$$\mathbf{RMSE}(\theta) = \left[\frac{1}{100} \sum_{i=1}^{100} (\hat{L}_i(\theta) - \tilde{L}(\theta))^2\right]^{1/2}$$

- Observation step size $\Delta = 30$
- Eular approximation
- Roughly same CPU time

(Average) Likelihood function:

Estimation of the likelihood function:

RMSE	exact	SMC-0	SMC-1
m	80,000	$3,\!500$	1,000
$\theta = 0.0\pi$	1.719	0.519	0.325
$\theta = 0.2\pi$	1.488	0.497	0.291
$\theta = 0.4\pi$	1.211	0.433	0.214
$\theta = 0.6\pi$	0.901	0.397	0.157
$\theta = 0.8\pi$	0.648	0.347	0.136
$\theta = 1.0\pi$	0.588	0.331	0.122
$\theta = 1.2\pi$	0.671	0.356	0.135
$\theta = 1.4\pi$	0.870	0.399	0.165
$\theta = 1.6\pi$	1.217	0.452	0.227
$\theta = 1.8\pi$	1.573	0.507	0.299
time(sec.)	0.490	0.478	0.470

Estimation of the log-transition density

 $y_0 = 0, y_n = 2\pi$

 $y_0 = 0, y_n = 5\pi$

Questions

- What are the principles of designing the intermediate distributions or the equivalent resampling scheme?
- How do we know one is better than another?
- Trade-off between better intermediate distributions and complexity
- Rationalize some of the existing resampling schemes

2.1.4 Inference

Inference:

$$\hat{E}_{\pi_t} h(\boldsymbol{x}_t) = \frac{\sum_{j=1}^m w_t^{(j)} h(\boldsymbol{x}_t^{(j)})}{\sum_{j=1}^m w_t^{(j)}}$$

- Estimation should be done before a resampling step
- Rao-Blackwellization: For example, if w_{t+1} does not depend on x_{t+1} , then

$$\hat{E}_{\pi_{t+1}}h(x_{t+1}) = \frac{\sum_{j=1}^{m} w_{t+1}^{(j)} E_{\pi_{t+1}}(h(x_{t+1}) \mid \boldsymbol{x}_{t}^{(j)})}{\sum_{j=1}^{m} w_{t+1}^{(j)}}$$

- Delayed estimation (i.e. $E_{\pi_t}h(x_{t-k})$ at time t) is usually more accurate since the estimation is based on more information.
- Frequent resampling may have adverse effect.

